已知a,b,c,d满足a+b=c+d,a的三次方+b的三次方=c的三次方+d的三次方,求证:
1个回答

已知 a+b = c+d,a^3+b^3 = c^3+d^3

a^3+b^3 = (a+b)(a^2-ab+b^2) = (c+d)(c^2-cd+d^2) = c^3+d^3

所以 a^2-ab+b^2 = c^2-cd+d^2 -------(1)

(a+b)^2 = (c+d)^2

所以 a^2+2ab+b^2 = c^2+2cd+d^2 ----(2)

(2)-(1) 3ab = 3cd,所以 ab = cd ----(3)

(3) 代入 (2) a^2+b^2 = c^2+d^2 -----(4)

用归纳法来做:

a^1 + b^1 = c^1 + d^1

a^2 + b^2 = c^2 + d^2

ab = cd

假设 a^n + b^n = c^n + d^n

所以 (a+b) (a^n + b^n) = (c+d)(c^n+d^n)

而 (a+b) (a^n + b^n) = a^(n+1) + ab^n + (a^n)b + b^(n+1)

= a^(n+1) + ab^n + (a^n)b + b^(n+1)

= a^(n+1) + ab[a^(n-1) + b^(n-1)] + b^(n+1)

(c+d)(c^n+d^n) = c^(n+1) + cd[c^(n-1) + d^(n-1)] + d^(n+1)

所以 a^(n+1) + b^(n+1) = c^(n+1) + d^(n+1)

由此类推,可以证明 a^2009 + b^2009 = c^2002 + d^2009