(1)作PE垂直BC于E,PF垂直AB于F.
又∠A=90°,则AD∥PF,⊿DAB∽⊿PFB,AD/AB=PF/FB;
又AD∥BC,则∠FBE=90°,得四边边形FBEP为矩形,得FB=PE.
即:AD/AB=PF/PE;又AD/AB=PQ/PC,则PF/PE=PQ/PC.设PF/PE=PQ/PC=m.
则PF=m*PE,PQ=m*PC;得 FQ=√(PB²--PF²)=m√(PC²-PE²),EC=√(PC²-PE²).
故FQ/EC=m,FQ/EC=PF/PE=PQ/PC,⊿PFQ∽⊿PEC,∠FPQ=∠EPC.
所以,∠QPE+∠EPC=∠QPE+∠FPQ=90度,即∠QPC=90度.
(2)当点Q在AB延长线上时,同理相似可证得:∠QPC=90度.