Sn=2An+3n-12(1) 求An 的通项公式 我已经求出来了 An=3*(1+2^n)(2)Bn=(An-3)/(
1个回答

(1)An=3(1+2^n)

(2)由题知,Sn=2An+3n-12=6(2^n-1)+3n

Bn=(An-3)/(Sn-3n)(A(n+1)-6)

=(3*2^n)/(6(2^n-1))(3(2^(n+1)-1))

=(2^n)/(6(2^n-1)(2^(n+1)-1))

=(1/6)[1/(2^n-1)-1/(2^(n+1)-1)]

B1+B2+……+Bn

=(1/6)[1/(2^1-1)-1/(2^(n+1)-1)]

=(1/6)[1-1/(2^(n+1)-1)]

<1/6

(3)Cn=(An-3)/3n=(2^n)/n

则1/Cn=n/(2^n)

设:1/C1 + 1/C2 +……+1/Cn=Tn,

Tn=1/(2^1)+2/(2^2)+3/(2^3)+……+n/(2^n)

乘以2得

2Tn=1+2/(2^1)+3/(2^2)+……+n/(2^(n-1))

两式相减得,

Tn=1+1/(2^1)+1/(2^2)+……+1/(2^(n-1))-n/(2^n)

=2-(2+n)/(2^n)

所以,

Tn=1/C1 + 1/C2 +……+1/Cn<2

若1/C1 + 1/C2 +……+1/Cn<loga(6-a)对所有的正整数n恒成立

则2≤loga(6-a)

1.当a∈(0,1)时,2≤loga(6-a)

即a²≤6-a且6-a>0,无解.

2.当a∈(1,+∞)时,2≤loga(6-a)

即a²≤6-a且6-a>0

所以,a∈(1,2]

综上所述,a∈(1,2]