由题意可知;a n=log 2
n+1
n+2 (n∈N *),
设{a n}的前n项和为S n=log 2
2
3 +log 2
3
4 +…+log 2
n
n+1 +log 2
n+1
n+2 ,
=[log 22-log 23]+[log 23-log 24]+…+[log 2n-log 2(n+1)]+[log 2(n+1)-log 2(n+2)]
=[log 22-log 2(n+2)]=log 2
2
n+2 <-5,
即
2
n+2 <2 -5
解得n>62,
∴使S n<-5成立的自然数n有最小值为63,
故答案为:63.