解题思路:(1)本题AB⊥DE,满足垂径定理,可以写出垂径定理的结论;
(2)根据三角形相似就可以证出;
(3)若点C和点E重合,设∠BAC=x,又D是
ABC
的中点,根据2∠CAD=∠CAD+ACD=180°-∠ABC,就可以求出∠BAC的度数.
(1)弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等.
(写对一个给(1分),写对两个给2分)
(2)如图,AB为弦,CD为弦,且AB与CD在圆内相交于点P.
结论:PA•PB=PC•PD.
证明:连接AD,BC,
∵∠APD=∠BPC,∠D=∠B
∴△APD∽△BPC
∴PA•PB=PC•PD;
(3)若点C和点E重合,
则由圆的对称性,知点C和点D关于直径AB对称,(8分)
设∠BAC=x,则∠BAD=x,∠ABC=90°-x,(9分)
又D是
ABC的中点,所以2∠CAD=∠CAD+∠ACD=180°-∠ABC,
即2•2x=180°-(90°-x),(10分)
解得x=∠BAC=30°.(11分)
(若求得AB=
3
2AC或AF=3•FB等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明.)
点评:
本题考点: 相交弦定理;垂径定理;相似三角形的判定与性质.
考点点评: 本题主要考查了垂径定理以及相交弦定理的证明过程,正确理解题意,读懂图意是解决本题的关键.