如图,DE是△ABC边AB的垂直平分线,分别交AB、BC于D、E.AE平分∠BAC.设∠B=x(单位:度),∠C=y(单
1个回答

解题思路:(1)根据线段的垂直平分线求出∠BAE的度数,求出∠BAC即可;

(2)AB=AC时,得出180-3x=x,求出即可;AB=BC时,得出180-3x=2x,求出即可.

(1)∵DE 垂直平分AB,

∴∠BAE=∠B=x,

又∵AE平分∠BAC,

∴∠BAC=2∠BAE=2x,

∴y=180-3x,

自变量x的取值范围是:0<x<60.

(2)显然,AC≠BC,

若 AB=AC,此时,x=y,

即:180-3x=x,

得:x=45(度);

若 AB=BC,此时,2x=y,

即:180-3x=2x,

得:x=36(度).

∴当△ABC为等腰三角形时,∠B分别为45°或36°.

点评:

本题考点: 线段垂直平分线的性质;角平分线的定义;三角形内角和定理;等腰三角形的性质.

考点点评: 本题考查了等腰三角形性质,线段的垂直平分线性质,角平分线的定义,三角形的内角和定理等知识点的应用,解(1)小题关键是求出∠CAB的度数,解(2)小题的关键是根据AB=AC和AB=BC得出方程,本题用了方程思想,题目比较典型,难度不大.