解题思路:(1)根据线段的垂直平分线求出∠BAE的度数,求出∠BAC即可;
(2)AB=AC时,得出180-3x=x,求出即可;AB=BC时,得出180-3x=2x,求出即可.
(1)∵DE 垂直平分AB,
∴∠BAE=∠B=x,
又∵AE平分∠BAC,
∴∠BAC=2∠BAE=2x,
∴y=180-3x,
自变量x的取值范围是:0<x<60.
(2)显然,AC≠BC,
若 AB=AC,此时,x=y,
即:180-3x=x,
得:x=45(度);
若 AB=BC,此时,2x=y,
即:180-3x=2x,
得:x=36(度).
∴当△ABC为等腰三角形时,∠B分别为45°或36°.
点评:
本题考点: 线段垂直平分线的性质;角平分线的定义;三角形内角和定理;等腰三角形的性质.
考点点评: 本题考查了等腰三角形性质,线段的垂直平分线性质,角平分线的定义,三角形的内角和定理等知识点的应用,解(1)小题关键是求出∠CAB的度数,解(2)小题的关键是根据AB=AC和AB=BC得出方程,本题用了方程思想,题目比较典型,难度不大.