解题思路:首先利用勾股定理求出BD的长,然后再利用勾股定理逆定理证明△BDC是直角三角形,根据内错角相等,两直线平行可判定DC∥AB,进而判定四边形ABCD是梯形.
∵BD⊥AB,
∴△ABD是直角三角形,
∴BD2=202-162=12,
∵122+92=152,
即:BC2=BD2+DC2,
∴∠BDC=90°,
∴DC∥AB,
又∵DC≠AB,
∴四边形ABCD是梯形.
点评:
本题考点: 梯形;勾股定理;勾股定理的逆定理.
考点点评: 此题主要考查了勾股定理,勾股定理的逆定理,以及梯形的判定,解决问题的关键是根据条件证明∠BDC=90°.