已知f(x)=sinx+2sin(π/4+x/2)cos(π/4+x/2).
1个回答

1)利用2倍角公式

f(x)=sinx+sin[2(π/4+x/2)]

=sinx+sin(π/2+x)

=sinx+cosx

=√2(√2/2sinx+√2/2cosx)

=√2(cosπ/4 sinx+sinπ/4 cosx)注意里面是π/4,别看错了

=√2sin(x+π/4)

f(a)=√2/2

即sin(x+π/4)=1/2

a∈(-π/2,0)

a+π/4(-π/4,π/4)

所以a+π/4=π/6 x=-π/12

2)x∈(π/2,π) 则x/2 ∈(π/4,π/2) 故cos(x/2)>0 cosx