八年级三角形证明题,已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=AC,∠ABC=120° ,∠MBN=60° ∠
2个回答

(1).当AE=CF时,由AB=BC,∠BAE=∠BCF,由全等三角形边角边定理(有两边及其夹角对应相等的两个三角形全等,SAS),可知△BAE≌△BCF.则∠ABE=∠CBF.

又∠ABC=120°,∠EBF=60°,∠ABE+∠CBF+∠EBF=∠ABC,可知∠ABE=∠CBF=(120°-60°)/2=30°

△BAE为直角三角形,且一顶角为30度,因此AE=BE/2.同理CF=BF/2.

由三角形全等又知BE=BF,加上角EBF为60度,可知△BEF为等边三角形.BE=BF=EF.

因此EF=AE+BF.

(2)若AE不等于CF,由勾股定理

BA^2+AE^2=BE^2

BC^2+CF^2=BF^2

由三角形边长公式,对三角形BEF来说

EF^2=BE^2+BF^2-2*BE*BF*cos∠EBF

=BA^2+AE^2+BC^2+CF^2-2*√(BA^2+AE^2)*√(BC^2+CF^2)*√3/2

=2AB^2+AE^2CF^2-√[3*(AB^2+AE^2)(AB^2+CF^2)] (1)

还有一个公式,是

tan∠ABE=AE/AB; tan∠CBF=CF/BC; ∠ABE+∠CBF=60°

由公式tan(a+b) =(tana+tanb)/(1-tana*tanb) 得

tan60°=(AE/AB+CF/AB)/(1-AE*CF/AB^2)

√3=[(AE+CF)/AB]/[(AB^2-AE*CF)/AB^2]

√3(AB^2-AE*CF)=(AE+CF)*AB

化简

√3AB^2-(AE+CF)*AB-AE*CF=0

可得出AB与AE和CF的关系,代入(1)号消去AB,即可得EF与AE,CF的通式.