(1)证明:由2an=Sn×S(n-1),an=Sn-S(n-1)得
2[Sn-S(n-1)]=Sn×S(n-1)
两边同时除以Sn×S(n-1)得
2[1/S(n-1)-1/Sn]=1
所以1/Sn=S(n-1)-1/2
所以:{1/Sn}是等差数列,公差是-1/2
(2):由{1/Sn}是等差数列得
1/Sn=1/S1+(n-1)(-1/2),S1=a1=3
所以1/Sn=1/3 +(n-1)(-1/2)
所以Sn=6/(5-3n)
所以S(n-1)=6/(8-3n)
所以an=Sn×S(n-1)=36/[(3n-5)(3n-8)] (n>1)
当n=1时,an=3
综上可得an=36/[(3n-5)(3n-8)] (n>1),an=3(n=1)