证:2x∧2/(y+z)-x=x(x-y)/(y+z)+x(x-z)/(y+z),2y∧2/(x+z)-y=y(y-x)/(x+z)+y(y-z)/(y+z),2z∧2/(x+y)-z=z(z-x)/(x+y)+z(z-y)/(x+y);
x(x-y)/(y+z)+y(y-x)/(x+z)=(x-y)^2*(x+y+z)/(y+z)(x+z)≥0,同理,x(x-z)/(y+z)+z(z-x)/(x+y)≥0,y(y-z)/(y+z)+z(z-y)/(x+y)≥0,于是命题得证.
注:具体的计算过程已省略,只写出了结果,请自己验证一下.