(tan10°-√3)×(cos10°/sin50°)×[(2cos10°-sin20°)/cos20°]
①(tan10°-√3)×(cos10°/sin50°)
=[(tan10°-√3)×cos10°]/sin50°
=(sin10°-√3cos10°)/sin50°
=[2sin(10°-60°)]/sin50°
=(-2sin50°)/sin50°
=-2
②(2cos10°-sin20°)/cos20°
=[2cos(30°-20°)-sin20°]/cos20°
=(2cos30°cos20°+2sin30°sin20°-sin20°)/cos20°
=[2×(√3/2)×cos20°+2×(1/2)×sin20°-sin20°]/cos20°
=(√3cos20°+sin20°-sin20°)/cos20°
=(√3cos20°)/cos20°
=√3
∴原式=(-2)×√3=-2√3