在ΔABC中,AC的垂直平分线分别交AC、AB与点D、F,BE⊥DF交DF的延长线与点E,已知∠A=30°,BC=2,A
1个回答

分析:因为DE是AC的垂直的平分线,所以D是AC的中点,F是AB的中点,所以DF∥BC,所以∠C=90°,所以四边形BCDE是矩形,因为∠A=30°,∠C=90°,BC=2,能求出AB的长,根据勾股定理求出AC的长,从而求出DC的长,从而求出面积.

∵DE是AC的垂直的平分线,F是AB的中点,

∴DF∥BC,

∴∠C=90°,

∴四边形BCDE是矩形.

∵∠A=30°,∠C=90°,BC=2,

∴AB=4,

∴AC=√(4²-2²)=2√3 .

∴BE=CD=√3 .

∴四边形BCDE的面积为:2×√3 =2√3 .