若abc=1,求(a除ab+a+1)+(b除bc+b+1)+(c除ac+c+1)的值 要转化为同分母的分式相加
收藏:
0
点赞数:
0
评论数:
0
3个回答

1/ab+a+1 + 1/bc+b+1 + 1/ac+c+1 =abc/(ab+a+abc)+ 1/(bc+b+1) + 1/(ac+c+1) =bc/(bc+b+1)+ 1/(bc+b+1) + 1/(ac+c+1) =(bc+1)/(bc+b+1)+ 1/(ac+c+1) =(bc+1)/(bc+b+abc)+ 1/(ac+c+1) =(bc+1)/[b(c+1+ac)]+ b/[b(ac+c+1)] =(bc+1+b)/[b(c+1+ac)] =(bc+abc+b)/(bc+b+abc) =1

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识