以y=C1 e^x+C2 x e^(-x)为通解的微分方程
1个回答

y=C₁e^x+C₂ x e^(-x)为通解的微分方程

y′=C₁e^x+C₂e^(-x)-C₂xe^(-x)

y′′=C₁e^x-C₂e^(-x)-C₂e^(-x)+C₂xe^(-x)=C₁e^x-2C₂e^(-x)+C₂xe^(-x),故得:

y′′-2y′+y=[C₁e^x-2C₂e^(-x)+C₂xe^(-x)]-2[C₁e^x+C₂e^(-x)-C₂xe^(-x)]+[C₁e^x+C₂ x e^(-x)]

=[2C₁e^x-2C₁e^x]-[2C₂e^(-x)-2C₂e^(-x)]+[2C₂xe^(-x)-2C₂xe^(-x)]=0

即原微分方程为y′′-2y′+y=0