数学归纳法证明Sn=TnSn=(1-1/2)+(1/3-1/4)+…+(1/(2n-1)-1/(2n))Tn=1/(n+
收藏:
0
点赞数:
0
评论数:
0
1个回答

①当n=1时,S1=1/2 T1=1/2 ∴S1=T1

②当n=2时,S2=1/2+1/12=7/12 T1=1/3+1/4 =7/12 ∴S2=T2

③假定Sn=Tn

S(n+1)=Sn+1/(2n+1)-1/(2n+2)

T(n+1)=Tn-1/(n+1)+1/(2n+1)+1/(2n+2)

=Tn+1/(2n+1)-[1/(n+1)-1/(2n+2)]

=Tn+1/(2n+1)-1/(2n+2)

可见S(n+1)=T(n+1),证毕

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识