a1=S1=2a1-2
a1=2
S2=a1+a2=2a2-2*4
2+a2=2a2-8
a2=10
S3=a2+a1+a3=2a3-2*9
10+2+a3=2a3-18
a3=30
an=Sn-S(n-1)=2an-2n^2-[2a(n-1)-2(n-1)^2]=2an-2a(n-1)-4n+2
an-2a(n-1)=4n-2
即有a(n+1)-2an=4(n+1)-2=4n+2
设bn=a(n+1)-2a(n)
b(n+1)=a(n+2)-2a(n+1)=4(n+1)+2=4n+6
b(n+1)-bn=4
故有数列{bn},即{a(n+1)-2a(n)}是一个等差数列.首项是b1=a2-2a1=10-4=6