设可微函数f(x)满足limx→0f(x)x=0,xf′(x)+∫x0f(x-u)du=sin2x,则(  )
1个回答

因为f(x)可微,

所以f(x)连续,则由

lim

x→0

f(x)

x=0,可得:

f(0)=0,f′(0)=

lim

x→0

f(x)−f(0)

x−0=0,

令t=x-u,得:

∫x0f(x−u)du=

∫x0f(t)dt,

从而:

xf′(x)+

∫x0f(x−u)du=xf′(x)+

∫x0f(t)dt

由:xf′(x)+

∫x0f(x−u)du=sin2x,

得:

f′(x)=

sin2x−

∫x0f(t)dt

x,x≠0,

∴f″(0)=

lim

x→0

f′(x)−f′(0)

x−0=

lim

x→0

sin2x−

∫x0f(t)dt

x2

=

lim

x→0

sin2x

x2−

lim

x→0

∫x0f(t)dt

x2=1−

lim

x→0

f(x)

2x=1−0=1>0,

从而:f′(0)=0,f″(0)>0,

∴f(0)是f(x)的极小值,

故选:A.