4n^2+10n+45=x^2
4n^2+10n+45-x^2=0
上方程的判别式△=10^2-4*4*(45-x^2)=4*(4x^2-155)
n=[-5±√(4x^2-155)]/4
n为整数,设4x^2-155=y^2
4x^2-y^2=155
(2x-y)*(2x+y)=1*155=5*31
要n有最大值,则要y取最大值,即2x-y=1,y可取得最大值,故得下方程组:
2x-y=1.(1)
2x+y=155.(2)
(2)-(1),得
y=77
x=39 也是整数
n=(-5±77)/4
故n最大=18
答:整数n的最大值=18