动圆D过定点A(0,2),圆心D在抛物线x 2 =4y上运动,MN为圆D在x轴上截得的弦.
1个回答

(1)设直线BC为y=kx+1,代入x 2+y 2=4得,(1+k 2)x 2+2kx-3=0,

S=

1

2 |FA|| x 1 - x 2 |

=

| x 1 - x 2 |

2

=

( x 1 + x 2 ) 2 -4 x 1 x 2

2

=

4 k 2 +3

(1+ k 2 ) 2

=

4-(

1

1+ k 2 -2 ) 2 ≤

3 .

当且仅当k=0时,△ABC的最大面积为

3 .

(2)设圆心 (a,

a 2

4 ) ,则圆为 (x-a ) 2 +(y-

a 2

4 ) 2 = a 2 +(2-

a 2

4 ) 2 .

当y=0时,x=a±2,

∴|MN|=4,

令∠MAN=θ,

由余弦定理,得16=m 2+n 2-2mncosθ,

又由 S △AMN =

1

2 mnsinθ-

1

2 |MN| y A

=

1

2 ×4×2=4 ,

16

mn =2sinθ ,

m

n +

n

m =2(sinθ +cosθ+

=2

2 sin(θ+

π

4 ) ≤2

2 ,

当 θ=

π

4 时取得最大值.