已知数列{an}的前n项和为Sn,且a1=0,对任意n∈N*,都有nan+1=Sn+n(n+1).(1)求数列{an}的
1个回答

(本小题满分14分)

(1)当n≥2时,nan+1=Sn+n(n+1),(n-1)an=Sn-1+n(n-1),…(1分)

两式相减得nan+1-(n-1)an=Sn-Sn-1+n(n+1)-n(n-1),…(3分)

即nan+1-(n-1)an=an+2n,得an+1-an=2.…(5分)

当n=1时,1×a2=S1+1×2,即a2-a1=2.…(6分)

∴数列{an}是以a1=0为首项,公差为2的等差数列.

∴an=2(n-1)=2n-2.…(7分)

(2)∵an=log2n=log2bn

∴bn=n?2an=n?22n-2=n?4n-1.…(9分)

∴Tn=40+2×4+3×42+…+n?4n?1,①

4Tn=4+2×42+3×43+…+n?4n,②…(11分)

①-②得-3Tn=40+4+42+…+4n-1-n?4n

=

1?4n

1?4?n?4n

=

(1?3n)?4n?1

3.…(13分)

∴Tn=

1

9[(3n?1)?4n+1].…(14分)