已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号(6)/3,长轴长2根号(3),直线l:y=kx+
1个回答

c/a=√6/3

c²/a²=2/3

2a=2√3

a=√3

a²=3

c²=2

b²=a²-c²=3-2=1

椭圆方程:x²/3+y²=1

(1)直线y=kx+1

设点A(x1,y1)B(x2,y2)

因为向量OA*向量OB=0

所以OA垂直OB

y1y2+x1x2=0

(kx1+1)(kx2+1)+x1x2=0

k²x1x2+k(x1+x2)+1+x1x2=0

将y=kx+1代入x²/3+y²=1

x²+3(k²x²+2kx+1)=3

(1+3k²)x²+6kx=0

x1+x2=-6k²/(1+3k²)

x1*x2=0

-6k²/(1+3k²)+1=0

1+3k²=6k²

3k²=1

k=±√3/3

(2)直线y=kx+m原点到直线的距离=√3/2

那么

|m|/√(1+k²)=√3/2

4m²=3+3k²

将y=kx+m代入x²/3+y²=1

x²+3(k²x²+2mkx+m²)=3

(1+3k²)x²+6mkx+3m²-3=0

x1+x2=-6mk/(1+3k²)

x1*x2=(3m²-3)/(1+3k²)

AB=√(1+k²)[(x1+x2)²-4x1*x2]

因为原点到直线距离为定值,所以当AB取最大值时,S就有最大值

令t=(1+k²)[36m²k²/(1+3k²)²+4(3-3m²)/(1+3k²)]

4m²=3+3k²代入

t=(1+k²)[9k²(3+3k²)/(1+3k²)²+(12-9-9k²)/(1+3k²)]

=(1+k²)(27k²+27k^4+3-9k²+9k²-27k^4)/(1+3k²)

=(1+k²)(27k²+3)/(1+3k²)²

=3(9k²+1)(k²+1)/(1+3k²)²

=3(9k^4+6k²+1+4k²)/(1+3k²)²

=3+12k²/(1+3k²)²

=3+12[k/(1+3k²)]²

=3+12[1/(1/k+3k)]²

1/k+3k≥2√3

所以t的最大值=4

AB最大值=2

S△AOB最大值=1/2×√3/2×2=√3/2