如图(1),有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,角C=90度,EG=4cm,角EGF=90度,O是三角形EFG斜边上的中点.
如图(2),若整个三角形从图一的位置出发,以1cm/s的速度沿射线AB方向平移,在三角形EFG平移的同时,点P从三角形EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,三角形EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm^2)(不考虑点P和G、F重合的情况)
(1)当x为何值时,OP平行于AC?
(2)求y与x之间的函数关系式,并确定自变量x的取值范围
(3)是否存在某一时刻,使四边形OAHP面积与三角形ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.