1、∵c=√3,a=2,
∴b^2=a^2-c^2=1,
∴椭圆方程为:x^2/4+y^2=1,
2、设动点P(x0,y0),M(x,y),A(1,1/2),M是PA的中点,
根据中点公式,x=(x0+1)/2,
x0=2x-1,(1)
y=(y0+1/2)/2,
y0=2y-1/2,(2)
∵P(x0,y0)在椭圆上,
∴x0^2/4+y0^2=1,
(2x-1)^2/4+(2y-1/2)^2=1,
即线段PA中点M的轨迹方程为:(x-1/2)^2+4(y-1/4)^2=1,
3、设经过原点O的直线方程为:y=kx,(1)
kx-y=0,
根据点线距离公式,
A(1,1/2)至直线距离d=|k-1/2|/√(1+k^2),
椭圆方程为:x^2/4+y^2=1,(2)
(1)代入(2)式,
(1+4k^2)x^2-4=0
根据韦达定理,
x1+x2=0,
x1x2=-4/(1+4k^2),
根据弦长公式,
|BC|=√(1+k^2)(x1-x2)^2=√(1+k^2)[(x1+x2)^2-4x1x2]
=√(1+k^2)[16/(1+4k^2)]
=4√[(1+k^2)/(1+4k^2)],
△ABC面积:S=BC*d/2=(1/2)4√[(1+k^2)/(1+4k^2)]*|k-1/2|/√(1+k^2)
=2|k-1/2|/√(1+4k^2),
(2k-1)^2=S^2(1+4k^2)
4k^2-4k+1=S^2+4S^2k^2,
4(1-S^2)k^2-4k+1-S^2=0,
要使二次方程有实数解,则△>=0,
16-16(1-S^2)^2>=0,
(1-S^2)