y=1/√x=x^(-1/2)
y'=-1/2*x^(-3/2)
切线斜率k=y'(a)=-1/2a^(-3/2)
切点坐标(a,1/√a)
切线方程
y-1/√a=-1/2a^(-3/2)(x-a)
令y=0,
得x=2a^(-1/2)*a^(3/2)+a=3a
切线交x轴于A(3a,0)
令x=0得y=1/√a+1/2*a^(-1/2)=3/(2√a)
切线交y轴于B(0,3/(2√a))
三角形AOB的面积
S=1/2|OA||OB|
=1/2*3a*3/2*1/√a
=9/4*√a
由9/4*√a=18
==>√a=8
==>a=64