解题思路:由f(x+2)=f(x)得函数的周期为2,然后利用函数的周期和奇偶性进行判断.
由f(x+2)=f(x),所以函数的周期为2,因为f(x)在[-3,-2]上为减函数,所以f(x)在[-1,0]上为减函数,因为f(x)为偶函数,所以f(x)在[0,1]上为单调增函数.因为在锐角三角形中,π-α-β<π2,所以α+β...
点评:
本题考点: 奇偶性与单调性的综合;抽象函数及其应用.
考点点评: 本题主要考查了函数的奇偶性和周期性的应用,以及三角函数的图象和性质,综合性较强,涉及的知识点较多.