T=2π/(π/6)=12
所以f(n)周期是12
f(1)=sinπ/6=1/2
f(2)=sin(2π/6)=√3/2
f(3)=sin(3π/6)=1
以此类推
f(4)=√3/2
f(5)=1/2
f(6)=0
f(7)=-1/2
f(8)=-√3/2
f(9)=-1
f(10)=-√3/2
f(11)=-1/2
f(12)=0
所以f(1)+f(2)+……+f(12)=0
则f(13)+f(14)+……+f(24)=0
……
102/12余数是6
所以f(1)+f(2)+f(3)+……+f(102)
=f(1)+f(2)+f(3)+……+f(6)
=1/2+√3/2+1+√3/2+1/2+0
=2+√3