如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分E
3个回答

解题思路:求出∠AFB=∠CED=90°,DE∥BF,推出AF=CE,连接BE、DF,根据HL证Rt△ABF≌Rt△CDE,推出DE=BF,得出平行四边形DEBF,根据平行四边形的性质推出即可.

BD平分EF,理由是:

证法一、连接BE、DF.

∵DE⊥AC,BF⊥AC,

∴∠AFB=∠CED=90°,DE∥BF,

∵AE=CF,

∴AE+EF=CF+EF,

即AF=CE,

在Rt△ABF和Rt△CDE中

AB=CD

AF=CE,

∴Rt△ABF≌Rt△CDE,

∴DE=BF,

∵DE∥BF,

∴四边形DEBF是平行四边形,

∴BD平分EF;

证法二、∵DE⊥AC,BF⊥AC,

∴∠AFB=∠CED=90°,DE∥BF,

∵AE=CF,

∴AE+EF=CF+EF,

即AF=CE,

在Rt△ABF和Rt△CDE中

AB=CD

AF=CE,

∴Rt△ABF≌Rt△CDE,

∴DE=BF,

∵在△BFG和△DEG中

∠BFG=∠DEG

∠BGF=∠DGE

BF=DE,

∴△BFG≌△DEG(AAS),

∴EG=FG,

即BD平分EF.

点评:

本题考点: 全等三角形的判定与性质;垂线;直角三角形全等的判定;平行四边形的判定与性质.

考点点评: 本题考查了平行四边形的性质和判定,垂线,全等三角形的性质和判定等知识点的运用,关键是得出平行四边形DEBF,题目比较好,难度适中.