A(n+1)=3An+n的三次方,怎么构造等比数列?
2个回答

用待定系数法啊.

A(n+1) = 3An + n^3,构造等比数列会具有下面的形式

A(n+1) + h(n+1)^3 + i(n+1)^2 + j(n+1) + k = 3(An + hn^3 + in^2 + jn + k),h,i,j,k是待定的系数

整理上式得到

A(n+1) + hn^3 + (3h + i)n^2 + (3h + 2i + j)n + (h + i + j + k )

= 3An + 3hn^3 + 3in^2 + 3jn + 3k,继续化简

A(n+1) = 3An + 2hn^3 + (2i - 3h)n^2 + (2j - 2i - 3h)n + (2k - h - i -j)

比较系数可得

2h = 1

2i - 3h = 0

2j - 2i - 3h = 0

2k - h - i - j = 0

依次解出

h = 1/2

i = 3/4

j = 3/2

k = 11/8

所以数列{An+1/2 n^3 + 3/4 n^2 + 3/2 n + 11/8}是等比数列