A、B两船的质量均为M,都静止在平静的湖面上,现A船中质量为[M/2]的人,以对地的水平速率v从A船跳到B船,再从B船跳
1个回答

解题思路:对系统应用动量守恒定律求出动量之比,然后求出船的速度之比;再根据速度关系求出动能之比.

B、以人与两船组成的系统为研究对象,人在跳跃过程中总动量守恒,所以A、B两船(包括人)的动量大小之比总是1:1,故B正确;

A、最终人在B船上,以系统为研究对象,在整个过程中,以A的速度方向为正方向,由动量守恒定律得:MvA-(M+[M/2])vB=0,解得:

vA

vB=[3/2],故A错误;

C、动能之比:

EKA

EKB=

1

2M

v2A

1

2(M+

M

2)

v2B=[3/2],故C正确,D错误;

故选:BC.

点评:

本题考点: 动量守恒定律.

考点点评: 解决的关键知道人、两船系统总动量守恒,总动量为零,对系统运用动量守恒定律进行求解.

相关问题