let x,y 的夹角=α
a=2x-y (1)
b=x+y (2)
(1)+(2)
3x=a+b
x =(a+b)/3, y = (2b-a)/3
|x|^2 =(1/9)(|a|^2+|b|^2+2a.b) = (1/9)(4+1) =5/9
|x| =√5/3
|y|^2= (1/9)(4|b|^2+|a|^2-4a.b)=(1/9)(4+4) =8/9
|y| =2√2/3
a⊥b
=> a.b=0
(2x-y).(x+y)=0
2|x|^2-|y|^2+|x||y|cosα=0
2(5/9)-(8/9)+(√5/3)(2√2/3)cosα=0
cosα= -√10/10