已知α,β是锐角,α+β≠π/2,且满足3sinβ=sin(2α+β)
1个回答

tan(α+β)=5tanα?

这个好象打错了吧!

(1)证明:∵3sinβ=sin(2α+β),∴3sin(α+β-α)=sin(α+β+α),

∴3[sin(α+β)cosα-cos (α+β) sinα]

= sin(α+β)cosα+ cos (α+β) sinα

∴2 sin(α+β)cosα

=4 cos (α+β) sinα

∴tan(α+β)=2tanα

α与β是锐角,α+β不等于90°

tan(α+β)=2tanα

(tanα+tanβ)/(1-tanα*tanβ)=2tanα

tanβ=tanα/(1+2tan^2α)

tanβ≤√2/4

tanα/(1+2tan^2α)≤√2/4

2√2*[tanα-(√2/2)]^2≥0

设tanα=√2/2,则sinα=1/√3,cos=√(2/3)

tanβ=tanα/(1+2tan^2α)=(√2/2)/[1+2(√2/2)^2]=√2/4

3sinβ=sin(2α+β)

3sinβ=sin(2α)*cosβ+cos(2α)*sinβ

3tanβ=2sinα*cosα+(1-2sin^α)*tanβ

tanβ=sinα*cosα/(1+sin^2α)=(1/√3)*√(2/3)/[1+(1/√3)^2]=√2/4

故tanα=√2/2,tanβ=√2/4

不懂的欢迎追问,