解题思路:(1)计算出小车需要的时间,然后可得出可以晚出发的时间;
(2)设大车速度为每小时x千米,则小车速度为每小时(x+30)千米,根据小车要提前30分钟到达,可得出方程,解出即可.
(3)设原速度为a,小车提速到原来的m倍,根据仍按时到达可得出方程,解出即可.
(1)总路程=80×2=160km,小车需要的时间为:[160/100]=1.6(小时),
故小车可以晚出发0.4小时,即24分钟,
(2)设大车速度为每小时x千米,
则2x=1.5(x+30),
解得x=90,
即大车速度为每小时90千米,小车速度为每小时120千米.
(3)设原速度为a,小车提速到原来的m倍,
根据题意得:[1/3]a+2a=(2-[1/3])ma,
解得:m=1.4,
答:应提速到原来的1.4倍.
点评:
本题考点: 一元一次方程的应用.
考点点评: 本题考查了一元一次方程的应用,属于行程问题,解答本题的关键是仔细审题,找到等量关系,利用方程思想解答.