已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线
1个回答

解题思路:(1)由两圆相外切得到|MP|=1+r,由⊙N与⊙P内切 得到|NP|=3-r,从而有根据|MP|+|NP|=4>|MN|=2,椭圆的定义可得P点的轨迹是以N,M为焦点的椭圆,求出a、b2的值,即得C的方程.

(2)求出直线的方程,代入椭圆方程中消去y,利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|即可.

(1)设点P(x,y),动圆P的半径为r,

∵⊙N与⊙P内切,∴|NP|=3-r,

∵⊙M与⊙P外切,∴|MP|=1+r,

∵|MP|+|NP|=4>|MN|=2,

∴P点的轨迹是以M,N为焦点的椭圆.|MP|+|NP|=4=2a,∴a=2,

∵|MN|=2c=2,c=1,

∴b2=a2-c2=3,

∴P的轨迹方程为:

x2

4+

y2

3=1.

(2)直线l的方程为y=2x-2,代入

x2

4+

y2

3=1,消去y得19x2-32x+2=0,

x1+x2=[32/19],x1•x2=[2/19].

∴|AB|=

1+22•

(

32

19)2−4(

2

19)=

5•

872

19=

2

1090

19.

点评:

本题考点: 直线与圆锥曲线的综合问题;轨迹方程;圆与圆的位置关系及其判定.

考点点评: 本题主要考查了椭圆的应用,直线与椭圆的关系.弦长的求法常需要把直线与椭圆方程联立,考查分析问题解决问题的能力.