如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE
1个回答

证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,

在△ABE和△CBF中,

AB=BC

∠ABC=∠ABC

BE=BF ,

∴△ABE≌△CBF(SAS),

∴∠BFC=∠BEA;

(2)连接DG,在△ABG和△ADG中,

AB=AD

∠DAC=∠BAC=45°

AG=AG ,

∴△ABG≌△ADG(SAS),

∴BG=DG,∠2=∠3,

∵BG⊥AE,

∴∠BAE+∠2=90°,

∵∠BAD=∠BAE+∠4=90°,

∴∠2=∠3=∠4,

∵GM⊥CF,

∴∠BCF+∠1=90°,

又∠BCF+∠BFC=90°,

∴∠1=∠BFC=∠2,

∴∠1=∠3,

在△ADG中,∠DGC=∠3+45°,

∴∠DGC也是△CGH的外角,

∴D、G、M三点共线,

∵∠3=∠4(已证),

∴AM=DM,

∵DM=DG+GM=BG+GM,

∴AM=BG+GM.