已知抛物线方程y²=4x,过焦点作直线L交抛物线C于A、B两点,求证:1/AM+1/BM恒为定值(AM和BM是
1个回答

焦点M(1,0),设直线x-1=ky,

(之所以这样设,而不设y=k(x-1)是因为这样可以包括垂直于x轴的那条直线x=1的那种情况)

则(x-1)²=x²-2x+1=k²y²=4k²x

x²-(2+4k²)x+1=0

x1+x2=2+4k²,x1x2=1.

线段MA、MB的长是点A、B到准线x=-p/2的距离,

则|MA|=x1+1,|MB|=x2+1,

1/|MA|+1/|MB|=1/(x1+1)+1/(x2+1)

=(x1+x2+2)/(x1x2+x1+x2+1)

=4(1+k²)/(1+2+4k²+1)

=1

一般的情况:

焦点F(p/2,0),设直线x-p/2=ky,

则x²-px+p²/4=k²y²=2pk²x

x²-(p+2pk²)x+p²/4=0

x1+x2=p+2pk²,x1x2=p²/4.

线段FA、FB的长是点A、B到准线x=-p/2的距离,

则FA=x1+p/2,FB=x2+p/2,

1/FA+1/FB=1/(x1+p/2)+1/(x2+p/2)

=(x1+x2+p)/[x1x2+p(x1+x2)/2+p²/4]

=2p(1+k²)/[p²/4+p²/2+p²k²+p²/4]

=2p(1+k²)/[p²(1+k²)]

=2/p