将半径为4cm的半圆围成一个圆锥,在圆锥里有一个内接圆柱(如图),当圆柱的侧面面积最大时,圆柱的底面半径是______c
1个回答

解题思路:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.

扇形的弧长=4πcm,

∴圆锥的底面半径=4π÷2π=2cm,

∴圆锥的高为

42−22=2

3cm,

设圆柱的底面半径为r,高为R.

[r/2]=

2

3−R

2

3,

解得:R=2

3-

3r,

∴圆柱的侧面积=2π×r×(2

3-

3r)=-2

点评:

本题考点: 二次函数的最值;圆柱的计算.

考点点评: 考查了二次函数的最值及圆柱的计算,用到的知识点为:圆锥的弧长等于底面周长;圆锥的高,母线长,底面半径组成直角三角形;相似三角形的相似比相等及二次函数最值相应的自变量的求法等知识.