(1)如图,OM平分∠AOC,ON平分∠BOC.
1个回答

(1)①NOC;

②∵∠AOB=90°,∠BOC=30°

∴∠AOC=∠AOB+∠BOC=120°

∵OM平分∠AOC

∴∠MOC=

∠AOC=60°(角平分线的定义)

同理,∠NOC=

∠BOC=15°

∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;

③∵∠AOB=α,∠BOC=θ

∴∠AOC=∠AOB+∠BOC=α+θ

∵OM平分∠AOC(已知)

∴∠MOC=

∠AOC=

(α+θ)(角平分线的定义)

同理,∠NOC=

∠BOC=

θ

∴∠MON=∠MOC﹣∠NOC=

(α+θ)﹣

θ=

α

∠MON与∠AOB的关系为:∠MON=

∠AOB.

(2)如图,

B是线段AC上一点,M是线段AC的中点,N是线段BC的中点,AB=a,BC=b,求出线段MN的长度.

则得到关系:MN=

AB.