如果f(x)=cos(x+b)+sin(x+b)为奇函数,则b的一个指可以为( )
3个回答

f(x) = cos(x+b)+sin(x+b)

= 根号2 * sin(x+b+π/4)

若f(x)是奇函数,则f(-x) = -f(x)

(根号2) * sin(b+π/4-x) = -(根号2) * sin(b+π/4+x)

也即sin(x-b-π/4) = sin(x+b+π/4)

所以有x - b-π/4 = 2kπ + x + b + π/4

或者x - b-π/4 + x + b + π/4 = kπ

即2b + π/2 +2kπ =0或者2x = kπ,后者不具有一般性,故舍去.

2b + π/2 +2kπ =0可转化为

b = kπ - π/4

在A,B,C,D中,只有D符合,

所以选D