解题思路:根据等边三角形的性质,即可推出△ABD≌△EBC,可得∠BDM=∠BCN,∠BEN=∠BAM,即可推出△NBC≌△MBD,然后可得BM=BN,即可推出△ABM≌△EBN.
∵AB=BE=EA,BC=CD=DB,
∴△ABE和△BCD为等边三角形,
∴∠ABE=∠DBC=∠DCB=∠EBD=60°,
∴∠ABD=∠EBC=120°,
∵在△ABD和△EBC中,
AB=EB
∠ABD=∠EBC
BD=BC,
∴△ABD和△EBC(SAS),
∴∠ADB=∠ECB,
∵在△NBC和△MBD中,
∠MDB=∠NCB
∠MBD=∠NBC
BD=BC,
∴△NBC≌△MBD(AAS),
∴BM=BN,
∵在△ABM和△EBN中,
AB=EB
∠ABM=∠EBN
BM=BN,
∴△ABM≌△EBN(SAS).
故选D.
点评:
本题考点: 等边三角形的性质;全等三角形的判定.
考点点评: 本题主要考查等边三角形的性质、全等三角形的判定与性质,关键在于根据相关的性质和判定定理推出相关的三角形全等.