设x1,x2,……,xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2
1个回答

数学归纳法:

n=1 x1*1/x1 =1>=1^2=1

n=2,(x1+x2)(1/x1 +1/x2 )=1+x1/x2+x2/x1+1=2+(x1^2+x2^2)/x1x2

>=2+2x1x2/x1x2=2+2=4=2^2

设n=k时结论成立,即(x1+x2+……+xk)(1/x1 +1/x2 +……+1/xk )≥k^2

当n=k+1时

[x1+x2+……+xk+x(k+1)][1/x1 +1/x2 +……+1/xk+1/x(k+1 )]

=(x1+x2+……+xk)(1/x1 +1/x2 +……+1/xk )+ x(k+1)[1/x1 +1/x2 +……+1/xk+1/x(k+1 )]+[x1+x2+……+xk+x(k+1)]1/x(k+1 )

x(k+1)/x1 +x1/x(k+1)= [x(k+1)^2+x1^2]/x1*x(k+1)>=2

同理x(k+1)/x2 +x2/x(k+1)>= 2.

x(k+1)/x(k+1) +x(k+1)1/x(k+1)>=2

x(k+1)[1/x1 +1/x2 +……+1/xk+1/x(k+1 )]+[x1+x2+……+xk+x(k+1)]1/x(k+1 )>=2(k+1)

[x1+x2+……+xk+x(k+1)][1/x1 +1/x2 +……+1/xk+1/x(k+1 )]

>=k^2+2(k+1)>(k+1)^2 即当n=k+1时也成立

故命题成立,证毕.