1.
令x=1,y=0
得f(1+0)=f(1)*f(0)
∴f(0)=1
令y=-x,则f(x+y)=f(0)=1
即f(x+y)=f(x)*f(y)=f(x)*f(-x)=1
f(x)=1/f(-x)
当x<0时, - x>0,
则0<f(-x)<1
∴1/f(-x)>1
即f(x)>1
2.
令y>0,则x+y>x,且0<f(y)<1
f(x+y)/f(x)=f(x)*f(y)/f(x)=f(y)
∴0<f(x+y)/f(x)<1
∵f(x)>0
∴f(x)>f(x+y)
又∵x<x+y
∴ f(x)在R上单调递减