a.b为实数,并且满足4a²+b²+ab=1 则2a+b的最大值是多少?
1个回答

最大值为2√10/5.

方法1、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,化简为:6*(a-t/4)^2=1-10t^2/16,等式恒成立,则有1-10t^2/16≥0,解得:-2√10/5≤t≤2√10/5.

方法2、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,

化简为:6a^2-3at+t^2-1=0

因为a属于R,要使该式有解,【可以看成关于a的一元二次方程,t为一未知数】

则△≥0,

可解得到:-2√10/5≤t≤2√10/5.