设圆的半径为r,圆心为(x0,y0)
圆与y轴相切说明x0^2=r^2
圆心在x-3y=0直线上,说明y0=x0/3;
被y=x截得的弦长为2根7,利用点到直线的距离及(应用到圆心,弦中点,弦端点组成的三角形)勾股定理可得
r^2 = (根7)^2 + (x0-y0)^2/(x0^2+y0^2)
x0^2 = 7 + (4/9)*x0^2/(10/9*x0^2)
x0^2 = 7 + 2/5
x0=+根7.4或-根7.4
y0=+(1/3)根7.4或-(1/3)根7.4
圆的方程为
(x+根7.4)^2+(y+(1/3)根7.4)^2 = 7.4
或
(x-根7.4)^2+(y-(1/3)根7.4)^2 = 7.4