1.f(x)=a*b=2cos²x+√3sin2x
=cos2x+√3sin2x+1
=2sin(2x+Π/6)+1
最小正周期T=2Π/2=Π
2.f(A)=2sin(2A+Π/6)+1=2
2sin(2A+Π/6)=1
sin(2A+Π/6)=1/2
则2A+Π/6=Π/6或者5Π/6
A≠0,所以A=Π/3
由正弦定理知:a/sinA=b/sinB=c/sinC=(b+c)/(sinB+sinC)
得sinB+sinC=3/2
即2sin[(B+C)/2]cos[(B-C)]=3/2
cos(B-C)=√3/2
B-C=Π/6
B+C=2Π/3
得出B=5Π/12 C=Π/4
由正弦定理知:a/sinA=c/sinC
得:c=√2
则b=3-√2