已知在平面直角坐标系中,A、B两点在x轴上,线段OA、OB的长分别为方程x²-8x+12=0的两个根,点C是y
1个回答

(1) x² = 8x + 12 = 0

(x-2)(x-6) = 0

x = 2或x = 6

A(2,0),B(6,0)

(2)过A、B的抛物线可表示为y = a(x - 2)(x - 6)

取x = 0,-3 = 12a

a = -1/4

y = -(x - 2)(x - 6)/4

(3)对称轴:x = (6+2)/2 = 4

此时y = -(4 - 2)(4 - 6)/4 = 1

E(4,1)

题中有遗漏,D来历不明,估计是C关于对称轴的对称点,以下按此做.

CE = √[(4-0)² + (1+3)²] = 4√2

①当△CEM是等膘三角形时

(i) CE = CM且M在C上方

M(0,4√2 - 3)

(ii) CE = CM且M在C下方

M(0,-4√2 - 3)

(iii) CM = EM

设M(0,m)

CM = |m +3|

EM = √[(4-0)² + (m - 1)²] = √[16 + (m - 1)²]

√[16 + (m - 1)²] = |m +3|

两边平方,解得m = 1

M(0,1)

(iv) CE = EM

设M(0,m)

CE = 4√2

EM = √[(4-0)² + (m - 1)²] = √[16 + (m - 1)²]

√[16 + (m - 1)²] = 4√2

两边平方,解得m = 5或m = -3(此为C,舍去)

M(0,5)