一道十分杀脑细胞的数学题试证明区间(0,1)与区间〔0,1〕有相同多的元素(我们老师说他想了半年才想出来)
1个回答

这个证明不难的, 不过无限集的基数确实是个有意思的东西,

比如偶数(2,4,6...2n) 是正整数(1,2,3,...n)的一个真子集

然而通过 :2←→1,4←→2,6←→3,.,2n←→n,. 它们之间建立了一个一一对映,从而偶数和正整数具有了相同的基数,这又与我们知道的真理:“整体大于它的任意一部分”相矛盾.哈哈

不废话了 现在开始证明:

(0,1)内的有理数集合=B;

自然数集合A={0,1,2,3,.n,n+1,...}

那么我只要把B按照一个序列排列起来,这个序列包括了所有的(0,1)中的有理数,就可证明A与B有相同的基数,

即B={r1,r2,r3,...rn,r(n+1)...} 其中r1≠r2≠...≠rn≠r(n+1)≠..

建立序列X:

1/2, 1/3,2/3, 1/4,2/4,3/4, 1/5,2/5,3/5,4/5, 1/6,2/6...5/6,.1/n,2/n.(n-1)/n.

把X中分子分母能够约分的去掉(比如 2/4,2/6,3/6.去掉)

就得到序列rn,

rn包括了所有(0,1)中的有理数,且r1≠r2≠...≠rn≠r(n+1)≠..

r1=1/2←→0

r2=1/3←→1

r3=2/3←→2

r4=1/4←→3

r5=3/4←→4

.

这就证明了 B和A有相同的基数.