已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是A(8,0),B(
6个回答

OD=√65

得OM=3.2

BD=5

S△DOP=(BD-BP)*OM/2

S=[5-(t-18)]*3.2/2

S=-1.6t+36.8 18≤t≤23

若能满足

P点(8,p)

Q点(q,0)

存在QP所在的直线∥于CD,CD=PQ,∠QDP=90°

PQ的直线斜率同y=3x/4+4为3/4

y=3x/4+b

代入P点

b=p-6

y=3x/4+p-6

代入Q点

0=3q/4+p-6

q=8-4p/3

P点(8,p),Q点(8-4p/3,0)

PQ=√[(8-4p/3-8)^2+p^2]

PQ=5p/3

CD=5

由CD=PQ

5=5p/3

p=3

∵P在AB上

∴0≤p≤10

∵Q在AO上

∴0≤8-4p/3≤8

即0≤p≤6.p=3成立

p=3,q=4时,存在QP所在的直线∥于CD,CD=PQ

∵∠QDP=90°

∴CD^2+DP^2=CP^2

5^2+[4^2+(7-p)^2]=8^2+(4-p)^2

p=5/3≠3

则不存在∠QDP=90°的情况

则不可在线段OA上找到一点Q,使四边形CQPD为矩形