已知x^2+x+1=0,求 x^4+3x^3+5x^2+4x+1997的值已知x^2-13x+1=0,求x^4+1/x^
1个回答

由x^2+x+1=0两边乘以x-1

得:

x^3=1

故:

x^4+3x^3+5x^2+4x+1997

=x+3+5x^2+4x+1997

=5x^2+5x+2000

=5(x^2+x+1)+1995=1995

x^4+1/x^4

=(x²+1/x²)²-2

=[(x+1/x)²-2]²-2

由x^2-13x+1=0

知x≠0

两边除以x

得x+1/x=13

故x^4+1/x^4=[(x+1/x)²-2]²-2

(x+1/x)²的个位数字是9

(x+1/x)²-2的个位数字是7

[(x+1/x)²-2]²的个位数字是9

故x^4+1/x^4=[(x+1/x)²-2]²-2的个位数字是7