已知tan2x=-2,兀/4
1个回答

[(2cos^2(x/2))-sinx-1]/[根号2*sin(兀/4+x)]

={[2*1/2(1+cosx)-sinx-1]}/[根号2*sin(兀/4+x)]

={1+cosx-1-sinx}/[根号2*sin(兀/4+x)]

=[cosx-sinx]/[根号2*sin(兀/4+x)]

=[根号2*sin(x+3/4兀)]/[根号2*sin(兀/4+x)]

=[sin(x+3/4兀)]/[sin(兀/4+x)]

=[sin(x+1/2兀+1/4兀)]/[sin(兀/4+x)]

=[cos(x+1/4兀)]/[sin(兀/4+x)]

=1/[tan(x+1/4兀)]

=[1-tan1/4兀*tanx]/[tan1/4兀+tanx]

=(1-tanx)/(1+tanx)

又tan2x=-2

2tanx/(1+tan^2 x)=-2

tan^2 x-tanx-1=0

又 兀/4